

General Description

Maxim's DG381-DG390 and DG381A-DG390A CMOS dual and quad analog switches combine low power operation with fast switching times and superior DC and AC switch characteristics. On resistance is less than 50Ω and is essentially constant over the analog signal range. Device specifications are ideal for battery powered circuitry.

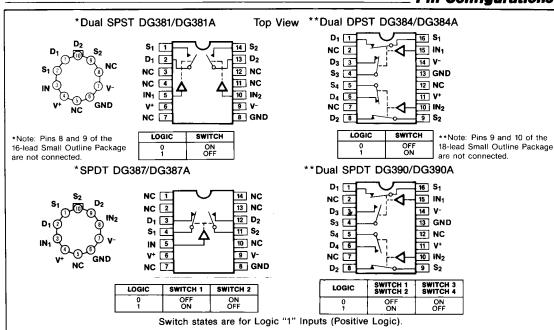
These switches are available in a variety of formats as outlined below in the Pin Configuration's section. The switch control logic inputs are fully TTL and CMOS compatible. Also featured are "break-before-make" switching and low charge injection.

Maxim's DG381-DG390 and DG381A-DG390A families are electrically compatible and pin compatible with the original manufacturer's devices. All devices will operate with power supplies ranging from $\pm 5V$ to $\pm 18V$. Single supply operation is implemented by connecting V^- to GND.

Applications

Portable Instruments Low Power Sample/Holds Power Supply Switching Programmable Gain Amplifiers SPDT and DPDT Functions Process Control and Telemetry Monolithic Low Power CMOS

- **Latch-Up Proof Construction**
- **Fully Compatible 2nd Source**
- Low On Resistance, $<50\Omega$
- **Fast Switching Time**
- V⁺ to V⁻ Analog Signal Range
- Single Supply Capability


Ordering Information

Features

PART	TEMP. RANGE	PACKAGE
DG381C/D	0°C to +70°C	Dice
DG381CJ	0°C to +70°C	14 Lead Plastic DIP
DG381CWE	0°C to +70°C	16 Lead Wide SO
DG381CK	0°C to +70°C	14 Lead CERDIP
DG381BWE	-25°C to +85°C	16 Lead Wide SO
DG381BK	-25°C to +85°C	14 Lead CERDIP
DG381BA	-25°C to +85°C	10 Lead Metal Can
DG381AK	-55°C to +125°C	14 Lead CERDIP
DG381AA	-55°C to +125°C	10 Lead Metal Can

(Ordering Information is continued on last page.)

Pin Configurations

MIXIM

ABSOLUTE MAXIMUM RATINGS

Voltages Referenced to V	
V ⁺ (DG381-DG390)	36V
V ⁺ (DG381A-DG390A)	44V
GND	25V
Digital Inputs, V _S , V _D (Note 1)4V to (V ⁺ + 4V) 01
30mA, whichever occurs f	irst.
Current, Any Terminal Except S or D 30	mA
Continuous Current, S or D	lm A
(Pulsed at 1msec, 10% duty cycle max) 100)mA
Storage Temperature (A & B Suffix)65°C to 150	0°C
(C Suffix)65°C to 12	5°C

Operating Temperature (A Suffix)55°C to 125°C
(B Suffix)25°C to 85°C
(C Suffix) 0°C to 70°C
Lead Temperature (Soldering 10 sec.) +300°C
Power Dissipation*
Cerdip (K) (Derate 11mW/°C above 75°C) 825mW
Plastic DIP (J) (Derate 6.5mW/°C above 25°C) 470mW
Metal Can (A) (Derate 6mW/°C above 75°C) 450mW

Device mounted with all leads soldered or welded to PC board.

Stresses listed under "Absolute Maximum Ratings" may be applied (one at a time) to devices without resulting in permanent damage. These are stress ratings only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum ratings conditions for extended periods may affect device reliability.

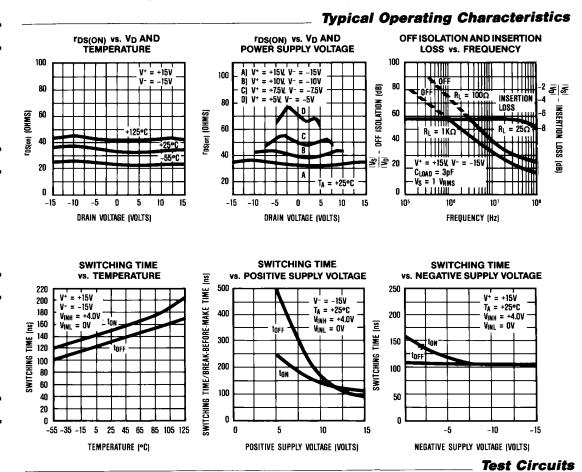
ELECTRICAL CHARACTERISTICS (V* = +15V, V" = -15V, GND = 0V, T_A = 25°C, unless otherwise indicated)

		0/11001	TEST CONDITIONS			381-DG3 11A-DG3			31-DG39 A-DG39		UNITS		
	PARAMETER	SYMBOL	IES	COI	NDITIONS	MIN (Note 2)	TYP (Note 3)	MAX	MIN (Note 2)	TYP (Note 3)	MAX	AX OTTI	
	Analog Signal Range	V _{ANALOG}	I _S = 10mA	V _{in} =	0.8V or 4.0V	-15		15	-15		15	٧	
	Drain-Source	_		I _S =	-10 mA, $V_D = 10$ V		30	50		30	50	Ω	
	ON Resistance	r _{DS(on)}		I _S =	10mA, $V_D = -10V$		30	50		30	50	12	
┰	Source OFF				$= 14V, V_D = -14V$		0.1	1		0.1	5		
SWITCH	Leakage Current	S(off)			= -14V, V _D = 14V	-1	-0.1		-5	-0.1			
NS.	Drain OFF		V _{in} = 4.0V		-14V, V _D = 14V		0.1	1		0.1	5	nA	
	Leakage Current	D(off)		V _s =	= 14V, V _D = -14V	-1	-0.1		-5	-0.1		'''`	
	Drain ON			V _D =	= V _S = 14V		0.1	4		0.1	5		
	Leakage Current	I _{D(on)}		V _D :	= V _S = -14V	-2	-0.1		-5	-0.1			
	Input Current/		V _{in} = 5.0V			-1	-0.001		-1	-0.001			
INPUT	Voltage High	I _{INH}	V _{in} = 15V				0.001	1		0.001	1	μΑ	
Ž	Input Current/ Voltage Low	I _{INL}	V _{in} = 0V			-1	-0.001		-1	-0.001		μΛ	
	Turn-ON Time	t _{on}	One Outle	L:	Firms Took Circuit		150	300		150	300		
	Turn-OFF Time	t _{off}	See Switc	ning	Time Test Circuit		130	250		130	250] [
	Break-Before-Make Interval	t _{on} -t _{off}	See Break-Before-Make Time Test Circuit DG387(A)/DG390(A) Only			50			50		ns		
	Charge Injection	Q	C _L = 10nF	R _{gen}	= 0Ω , V_{gen} = $0V$		12			12		pC_	
	Source OFF Capacitance	C _{S(off)}	f = 1MH	7 .	V _S = 0V		14			14			
:	Drain OFF Capacitance	C _{D(off)}	V _{in} = 0.8 or	SV.	V _D = 0V		14			14			
	Channel ON Capacitance	C _{D(on)} + C _{S(on)}	V _{in} = 4.0		$V_S = V_D = 0V$		40			40		pF	
	Innut Canacitanas		f = 1M⊦	1-	V _{in} = 0V	L	6			6			
	Input Capacitance	C _{in}	1 - IMIF	12	V _{in} = 15V		7			7			
	Off Isolation (Note 4)		V = 0V 5	1	-		62			62			
	Crosstalk (Channel to Channel)		$V_{in} = 0V, F$ $V_{S} = 1 V_{R}$	MS, f	= 500kHz		74			74		dB	

(See Notes next page).

ELECTRICAL CHARACTERISTICS (Continued)

(V $^+$ = +15V, V $^-$ = -15V, GND = 0V, T_A = 25°C, unless otherwise indicated)


					381-DG3 31A-DG3			81-DG39 A-DG39	OAB/C	
	PARAMETER	SYMBOL	TEST CONDITIONS	MIN (Note 2	TYP) (Note 3)	MAX	MIN (Note 2)	TYP (Note 3)	MAX	UNITS
	Positive Supply Current	I ⁺	V _{in} = 4V (One Input)		0.23	0.5		0.23	0.5	mA
PLY	Negative Supply Current	۲	(All Others = 0)	-10	-0.001		-100	-0.001	-	
SUPPLY	Positive Supply Current	I ⁺	V = 0.9V (All Inputs)		0.001	10		0.001	100	μΑ
	Negative Supply Current	1-	V _{in} = 0.8V (All Inputs)	-10	-0.001		-100	-0.001		

ELECTRICAL CHARACTERISTICS (Over Temperature) ($V^* = +15V$, $V^- = -15V$, GND = 0V, T_A = Over Temperature Range, unless otherwise indicated)

						81-DG3 1A-DG3			1-DG39 A-DG39		
	PARAMETER	SYMBOL	TES	T CONDITIONS	MIN (Note 2)	TYP (Note 3)	MAX	MIN (Note 2)	TYP (Note 3)	MAX	UNITS
	Analog Signal Range	V _{ANALOG}	I _S = 10mA	, V _{in} = 0.8V or 4.0V	-15		15	-15		15	٧
	Drain-Source ON Resistance	r _{DS(on)}	:	$I_S = -10\text{mA}, V_D = 10V$ $I_S = 10\text{mA}, V_D = -10V$			75 75	_		75 75	Ω
된	Source OFF Leakage Current	I _{S(off)}	V _{in} = 0.8V	$V_S = 14V, V_D = -14V$ $V_S = -14V, V_D = 14V$	-100		100	-100	·	100	
SWITCH	Drain OFF Leakage Current	I _{D(off)}	or V _{in} = 4.0V	$V_S = -14V, V_D = 14V$ $V_S = 14V, V_D = -14V$	-100		100	-100		100	nA
	Drain ON Leakage Current	I _{D(on)}		$V_D = V_S = 14V$ $V_D = V_S = -14V$	-200		100	-200		100	
INPUT	Input Current/ Voltage High	I _{INH}	V _{in} = 5.0V V _{in} = 15V		-1		1	-10		10	
N N	Input Current/ Voltage Low	I _{INL}	V _{in} = 0V		-1			-10			μΑ
	Positive Supply Current	I ⁺	V _{in} = 4V (V _{in} = 4V (One Input)			1			1.5	mA
PLY	Negative Supply Current	Γ	(All Other	s = 0)	-100			-200			
SUPPLY	Positive Supply Current	1*	V = 0.0V	(All Inputs)			100			200	μΑ
	Negative Supply Current	1-	v _{in} = 0.8V	(All Inputs)	-100			-200			

Note 1: Signals on S_X, D_X, or IN_X exceeding V⁺ or V⁻ will be clamped by internal diodes. Limit diode forward current to maximum current ratings.

maximum current ratings.
 Note 2: The algebraic convention whereby the most negative value is a minimum, and the most positive value is a maximum is used in this data sheet.
 Note 3: Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
 Note 4: OFF isolation = 20 log Vs/D_D, Vs = input to OFF switch, VD = Output.

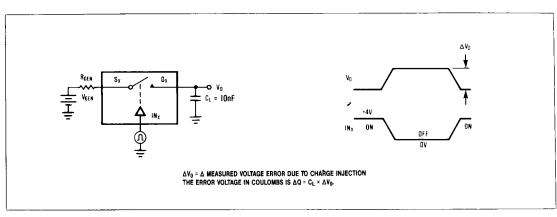


Figure 1. Charge Injection Test Circuit.

Test Circuits (Continued)

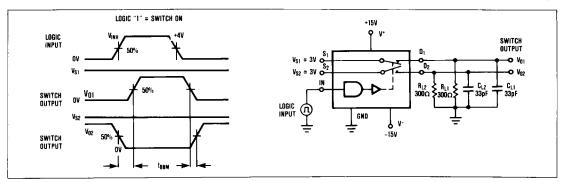


Figure 2. Break-Before-Make Time Test Circuit SPDT (DG387(A)/DG390(A)).

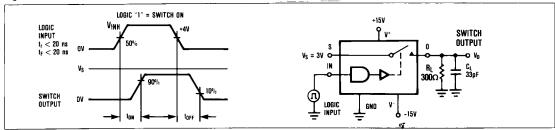


Figure 3. Switching Time Test Circuit.

Application Information

All DG381 family switches will operate with ± 5 to $\pm 15 \text{V}$ power supplies. They can also be used with single ended power supplies ranging from +10V to +30V where the V⁻ terminal is connected to ground. In either case analog signals ranging from V⁺ to V⁻ can be switched.

The on resistance variation with analog signal and supply voltage is shown in the Typical Operating Characteristics graphs. The temperature coefficient of R_{ON} is typically 0.5%/°C. Typical on resistance matching from channel to channel is 10%. In addition, Table 1 outlines some typical parameters for single supply operation.

Table 1. Typical Single Supply Parameters

		V* SUPPLY VOI	LTAGE (V" = 0V)	
	+10V	+15V	+20V	+30V
Switching Time (R _L = 1kΩ)				
ton	190ns	150ns	110ns	70ns
toff	40ns	40ns	40ns	40ns
On Resistance				
V _{SIGNAL} = +1V	71Ω	51Ω	42Ω	31Ω
V _{SIGNAL} = V ⁺ /2	77Ω	54Ω	43Ω	30Ω
VSIGNAL = V+	84Ω	63Ω	54Ω	43Ω
Input Logic Levels	0.8V, 4.0V	0.8V, 4.0V	0.8V, 4.0V	0.8V, 4.5V

The charge injection test circuit is shown in Figure 1. Table 2 lists the typical injected charge for DG381 series switches with various input voltages.

Table 2. Charge Injection (±15V Supplies)

ANALOG INPUT	INJECTED Q
+10V	4pC
+5V	8pC
OV	12pC
-5V	
-10V	8pC 5pC

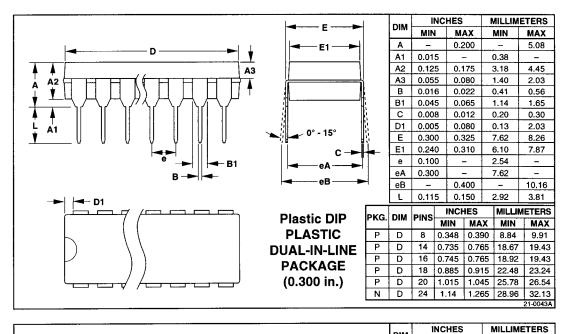
1

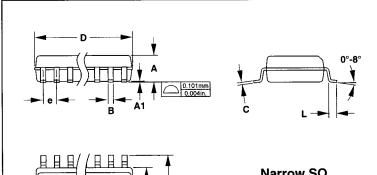
Chip Topography

_ Ordering Information (continued)

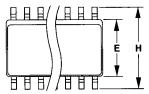
DIE PAD	DG381 DG381A	DG387 DG387A	DG384/390 DG384A/390A
а	N.C.	N.C.	S3
b	D1	D1	D3
С	D1	S1	D1
d	S1	IN1	S1
e	IN1	IN1	IN1
f	l v⁺	V ⁺	V ⁺
g	GND	GND	GND
ĥ	V-	V -	V -
i	IN2	GND	IN2
i	S2	V-	S2
k	D2	S2	D2
1	D2	D2	D4
m	N.C.	N.C.	S4
n	V ⁺	V ⁺	V ⁺

Ordering Information (continued)


PART	TEMP. RANGE	PACKAGE
DG381AC/D	0°C to +70°C	Dice
DG381ACJ	0°C to +70°C	14 Lead Plastic DIP
DG381ACWE	0°C to +70°C	16 Lead Wide SO
DG381ACK	0°C to +70°C	14 Lead CERDIP
DG381ABWE	-25°C to +85°C	16 Lead Wide SO
DG381ABK	-25°C to +85°C	14 Lead CERDIP
DG381ABA	-25°C to +85°C	10 Lead Metal Can
DG384C/D	0°C to +70°C	Dice
DG384CJ	0°C to +70°C	16 Lead Plastic DIP
DG384CWE	0°C to +70°C	16 Lead Wide SO
DG384CK	0°C to +70°C	16 Lead CERDIP
DG384BWE	-25°C to +85°C	16 Lead Wide SO
DG384BK	-25°C to +85°C	16 Lead CERDIP
DG384AK	-55°C to +125°C	16 Lead CERDIP
DG384AC/D	0°C to +70°C	Dice
DG384ACJ	0°C to +70°C	16 Lead Plastic DIP
DG384ACWE	0°C to +70°C	16 Lead Wide SO
DG384ACK	0°C to +70°C	16 Lead CERDIP
DG384ABWE	-25°C to +85°C	16 Lead Wide SO
DG384ABK	-25°C to +85°C	16 Lead CERDIP
DG387C/D	0°C to +70°C	Dice
DG387CJ	0°C to +70°C	14 Lead Plastic DIP
DG387CWE	0°C to +70°C	16 Lead Wide SO
DG387CK	0°C to +70°C	14 Lead CERDIP
DG387BWE	-25°C to +85°C	16 Lead Wide SO

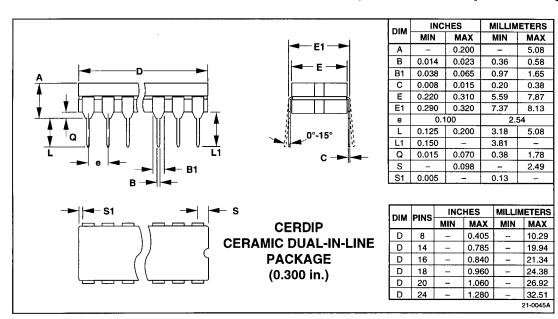

PART	TEMP. RANGE	PACKAGE
DG387BK	-25°C to +85°C	14 Lead CERDIP
DG387BA	-25°C to +85°C	10 Lead Metal Can
DG387AK	-55° C [™] o +125° C	14 Lead CERDIP
DG387AA	-55°C to +125°C	10 Lead Metal Can
DG387AC/D	0°C to +70°C	Dice
DG387ACJ	0°C to +70°C	14 Lead Plastic DIP
DG387ACWE	0°C to +70°C	16 Lead Wide SO
DG387ACK	0°C to +70°C	14 Lead CERDIP
DG387ABWE	-25°C to +85°C	16 Lead Wide SO
DG387ABK	-25°C to +85°C	14 Lead CERDIP
DG387ABA	-25°C to +85°C	10 Lead Metal Can
DG390C/D	0°C to +70°C	Dice
DG390CJ	0°C to +70°C	16 Lead Plastic DIP
DG390CWE	0°C to +70°C	16 Lead Wide SO
DG390CK	0°C to +70°C	16 Lead CERDIP
DG390BWE	-25°C to +85°C	16 Lead Wide SO
DG390BK	-25°C to +85°C	16 Lead CERDIP
DG390AK	-55°C to +125°C	16 Lead CERDIP
DG390AC/D	0°C to +70°C	Dice
DG390ACJ	0°C to +70°C	16 Lead Plastic DIP
DG390ACWE	0°C to +70°C	16 Lead Wide SO
DG390ACK	0°C to +70°C	16 Lead CERDIP
DG390ABWE	-25°C to +85°C	16 Lead Wide SO
DG390ABK	-25°C to +85°C	16 Lead CERDIP

DG381(A)/DG384(A)/DG387(A)/DG390(A)


General Purpose CMOS Analog Switches

_Package Information

DIM	MIN	MAX	MIN	MAX
Α	0.053	0.069	1.35	1.75
A1	0.004	0.010	0.10	0.25
В	0.014	0.019	0.35	0.49
С	0.007	0.010	0.19	0.25
E	0.150	0.157	3.80	4.00
е	0.0)50	1.	27
Н	0.228	0.244	5.80	6.20
L	0.016	0.050	0.40	1.27



Narrow SO SMALL-OUTLINE PACKAGE (0.150 in.)

DIM	PINS	INCHES		MILLIMETERS	
		MIN	MAX	MIN	MAX
D	8	0.189	0.197	4.80	5.00
D	14	0.337	0.344	8.55	8.75
D	16	0.386	0.394	9.80	10.00

21-0041A

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

DG384AAK/883B